Open Access

Full Length Article

ORIGINAL ARTICLE

Water Quality Parameters and Fish Diversity at Chashma Barrage, Mianwali, Punjab, Pakistan

Bushra Kalsoom¹, Bushra Mishal¹, Tanzeela Sardar¹, Zahida Nasreen², Sehrish Kalsoom^{3,*}, Aneela Sharif³

¹Department of Zoology, University of Mianwali, Punjab, Pakistan. ²Department of Zoology, University of Punjab, Pakistan.

³Department of Zoology, University of Sargodha, Sub Campus Mianwali, Pakistan.

ABSTRACT

Background: Quality of water is an important factor and of critical importance in determining fish diversity of a particular water body. Water quality includes physical, chemical, and biological properties of water.

Objectives: The present research was conducted to study the fresh water quality parameters and fresh water fish diversity in Chashma Barrage, Punjab, Pakistan.

Methodology: The data was collected every Sunday from February, 2020 to May, 2020 for 16 weeks. Recommended official methods of Analysis of the Association of Chemists (AOAC) were used to determine different water parameters such as water temperature, pH, Dissolved Oxygen (DO), nitrite, nitrate and chloride concentration, total dissolved solids, total suspended solids and total hardness of water. The results were compared with standard values of these parameters.

Results: Results showed that the water temperature, pH, DO, concentration of nitrite and nitrate, and other water quality parameters were in proper ratio, where the fish population flourishes to a maximum extent. During this 16-week study, a total of 14610 fishes were captured, out of which 12 species were identified as per following details: 5 species belonged to family Cyprinidae, 2 species represented the family Bagridae, while 1 species of each in the family i.e. Allidae, Channidae, Cichlide, Siluridae, Mastacembelidae, respectively.

Conclusion: Family Cyprinidae is the dominant one in Chashma Barrage having 5 species, and this was the maximum diversity first time recorded in Chashma Barrage. Also, the temperature of the water was optimum to support fish growth and species richness in the Barrage.

Keywords	*Address of Correspondence	Article info.
Chashma Barrage, Fish Diversity, Parameters, Pakistan, Water Quality,	sehrish.kalsoom1820@gmail.com	Received: May 8, 2021 Accepted: September 22, 2021
AOAC.		

Cite this article Kalsoom B, Mishal B, Sardar T, Nasreen Z, Kalsoom S, Sharif A. Water Quality Parameters and Fish Diversity at Chashma Barrage, Mianwali, Punjab, Pakistan. 2021; 12(2):135-145.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

INTRODUCTION

Pakistan has an area of 780,000 hectares, out of which 9.7% is wetland area including 73% of freshwater of the country¹. Almost 21,723 fish species have been recorded globally, amongst which 11,650 species are from marine sources while 8,411 species are from freshwater in distribution². Interestingly, 193 freshwater fish species are

present in Pakistan³ and from this count, the Indus River comprises 180 fish species⁴. Diversity of fish species in the Indus River of Pakistan and all of its tributaries has been studied by various ichthyologists in past decades. It is very difficult to refer all of these efforts to only a few ichthyologists, but in Pakistan, most of the important contributions are given by ichthyologists referred here⁵⁻¹⁶.

Fish growth and diversity is greatly affected by physicochemical parameters of water quality¹⁷. Water quality includes the physical, chemical and biological properties of water¹⁸. Various physicochemical factors such as alkalinity, water temperature, ammonia, dissolved oxygen, free carbon dioxide, pH and total hardness are various physiochemical factors which strongly influence fish health^{19, 20}. Water quality deteriorates mainly due to O₂ depletion, free CO₂, high ammonia level and temperature changes²¹.

Chashma wetland ecosystem is a manmade lake and is situated along Indus river at 32° 25' N, 71° 22' E. This is a wetland of international reputation and is also a RAMSAR site (a wildlife sanctuary of international importance) according to RAMSAR convention (Convention on wetlands of international importance especially as waterfowl habitat). It is an important site for migratory birds, and fish culturing is one of the main activity carried out here²². Wetlands have great importance in regulating water cycle by acting as reservoir for rain water and melting snow, holding sediments, and in purification of water. In fact, wetlands also receive wastewater and urban runoff, thus acting as filter and sink for pollutants. These are some of the important ecological services offered by wetlands²³. Fish farming plays a remarkable role in decreasing poverty in rural areas by giving empowerment to poor people and raising their living standard. Pakistan is a transitional zone between Palearctic and Oriental region fauna, but its freshwater reservoirs are being polluted by anthropogenic activities including the discharge of domestic and industrial effluents, hydroelectric power plants, construction of dams and Barrages etc. Physiological parameters of water must be in optimum limits because any change in these parameters would affect the fish growth and diversity. Poor physiological parameters also cause a decrease in commercially valuable fish products that in turn affect the economy of the country²⁴.

In order to observe the fish diversity of Chashma Barrage, it was important to understand the significance of water quality parameters and also the significance of Chashma as a wetland because it gives valuable information about the aquatic biodiversity of that region²³. The topographical features of the surrounding area of Barrage include loamy soil while the dominant crops of the area are rice, wheat, sugarcane, pluses and orchards. The basic aim of this research was to analyze water quality parameters and fish diversity. The parameters of this research include the water temperature, pH, dissolved oxygen, nutrient content i.e. amount of nitrate and nitrite. Chloride concentration is also important because any increase in its amount becomes fatal for fishes. All of these parameters determine the favorability of water for fish growth.

MATERIALS AND METHODS

Study Area Standards

This research focuses on the Chashma Barrage (32.43389°N, 71.37889 °E) which is situated on the left bank of Indus River downstream to the Jinnah Barrage. Chashma Barrage is constructed nearby the Koh-e-Sulieman mountain range as shown in the Fig. 1. Chashma Barrage is situated about 13.3km away from Kundian town in the southwest of district Mianwali in Punjab province. Mianwali is 200m above the sea level. The climate of Mianwali is dry subtropical with hot dry summers (~ 51°C) and cool winters (~ -2°C). The annual rainfall of the district is 250mm². Chashma wetland was designated as a RAMSAR site, the Wildlife Sanctuary of international importance, on 22nd March, 1996. The water quality parameters make this area more suitable for more than 80 fish species (Pakistan seafood export report-2019). These parameters directly affect fish growth because the fish take their nutrients from the water.

Water Sampling

Sampling data of 16 week was collected from February, 2020 to May, 2020 in Chashma Barrage. Random samples of water were collected on weekends for water quality analysis as the sampling site was quite far away and it was not feasible to travel on daily basis after work. As Chashma Barrage is divided into two banks, so random samples were collected for water analysis from various sites during the day time. Those areas were preferred for water collection that were already used by numerous fishermen for fishing.

Figure 1. Satellite image of Chashma Barrage.

Polypropylene bottles of 1 liter were used for the collection of water samples. All the bottles were washed with ethanol and running water of the barrage before sample collection. Sample bottles were labeled with the exact time of collection and the date for analysis of water parameters. Water samples were collected from the depth of 2 feet below the surface of the water. Polypropylene sample bottles were carried to the Laboratory of Agriculture Tech, Iskandrabad for the analysis of respective parameters of water. All the water quality parameters were measured in situ. Dissolved oxygen was measured by dissolved oxygen meter (DO₂-9500, Jenway). The pH was measured by a pH meter (pH-0073, TOA). Water temperature was measured by Check-Temp (HI2200, HANNA Instruments). Total Dissolved Solids (TDS), Total Suspended Solids (TSS), Total Hardness (TH) of water and Chloride (CI-) concentration were measured by TSS/TDS/TH/NaCI meter (HI 2300, HANNA Instruments). Nitrate and nitrite concentrations were measured by spectrophotometer (UV-6000, R & M Instruments). Hatch kit was used for carrying these sample bottles to the laboratory.

Fish Sampling

In Chashma Barrage various methods were used to capture fish fauna. The fishes were caught with the help of local fishermen who were working under the contractor of Chashma Barrage. Different types of bait (i.e. worms, minnows, or power bait) were used as a food to capture fish species. The fishes were caught by using polyester fishnets with the help of boats on every weekend survey to the Barrage during the daytime. Different diversity indices were applied to calculate the abundance of species. Simpson Diversity Index was used to measure the number of species present as well as the relative abundance of species. It was calculated by using the following formula:

$D = N (N - 1) / \Sigma n (n-1)$

Where D is Simpson Diversity Index, n is number of individuals of a particular fish species, and N is total number of individuals in the entire sample. Similarly, Shannon Diversity Index was used to characterize species' diversity in a community. It was found out by following formula:

$H = \Sigma p_i . Inp_i$

Where H is Shannon Diversity Index, and p_i is the proportion of total number of individuals in each species.

Species Richness Index explains the total number of species in the community while Species Evenness explains how evenly several different species are distributed in a community. The diversity and richness of fish species was observed every weekend and data was collected quantitatively on each catch.

Statistical Analysis

The data of fish fauna and water quality parameters was subjected to statistical analysis with the help of Microsoft Excel-2019, which is a standard statistical tool for the data of biological sciences. For parameters of water, Mean and Standard Deviation were calculated by using Microsoft Excel while t-test and ANOVA were applied to check statistical significance. Different diversity indexes were applied to the data of fish samples for verification and accuracy of results, according to every weekend survey. To calculate the diversity of fish species, Simpson's Diversity Index, Shanon Diversity Index, Species Evenness Index, and Species Richness Index were applied for statistical analysis.

RESULTS

Water Quality Parameters

Normal ranges of all the parameters included in water quality are given in Table 1, while the detailed result of WQ

Table 1. Normal Ranges of Water Quality Parameters.

parameters is given in Table 2, which represents the fluctuations in water parameters in respective weeks. The weekly mean of water temperature was ranged from 21.8 ± 0.62 to 28.84 ± 0.85 °C. The weekly mean of pH was found within the range of 7.2 ± 0.33 to 8.05 ± 0.76 . The DO was slightly higher within the range of 9.2 ± 0.38 to 11.5 ± 0.76mg/L. The concentration of Chloride ions (CI) was ranging from 18 ± 1 to 29 ± 5 ppm. The concentration of nitrite was low, ranging from 0.39 ± 0.02 to 0.76 ± 0.37ppm. The concentration of nitrate was found higher than nitrite, i.e. ranging from 5.31 ± 0.42 to 7.34 ± 0.61 (ppm). Total Dissolved Solids (TDS) in water were ranged from 125 ± 2 to 235 ± 9 ppm. Total Suspended Solids (TSS) in water were ranging from 112 ± 3ppm while Total Hardness (TH) of water was ranging from 126 ± 1 to 172 ± 5ppm.

Parameter	Range
Temperature	25-30
pH	7-9
Dissolved oxygen	5-10
Nitrite	<1 ppm
Nitrate	<5 ppm
Total dissolved solids	50-1000 ppm
Total hardness	>20 ppm

Table 2. Fish Diversity and Population at Chashma Barrage Recorded Each Week (Total 16 weeks).

Parameters				Sampling	g Weeks			
	Week-1	Week-2	Week-3	Week-4	Week-5	Week-6	Week-7	Week-8
Temperature	28.46±	26.5 ±	24.9 ±	27.4 ±	24.9 ±	23.6 ±	28.8 ±	24.8 ±
(°C)	0.15***	0.26***	1.40***	2.5***	4.4***	4.14***	6.49***	6.49***
pH (H⁺)	8.05±	7.4 ±	7.9 ±	7.7 ±	7.65 ±	7.8 ±	7.6 ±	7.7 ±
рп (п.)	0.76**	0.36**	0.29**	0.26**	0.32**	0.37**	0.34**	0.41**
DO (mg/L)	9.5±	9.3 ±	10.4 ±	9.2 ±	9.5 ±	9.7 ±	9.9±	10.4 ±
DO (IIIg/L)	0.42*	0.41*	0.64*	0.38*	0.34*	0.46*	0.51*	0.69*
Chlorido (ppm)	18 ±	24 ±	26 ±	28 ±	22 ±	26 ±	28 ±	29 ±
Chloride (ppm)	1**	4**	3**	5**	2**	2**	4**	5**
Nitrito (ppm)	0.41±	0.47 ±	0.49 ±	0.39 ±	0.45 ±	0.58 ±	0.61 ±	0.72±
Nitrite (ppm)	0.05**	0.08**	0.09**	0.02**	0.04**	0.09**	0.21**	0.32**
Nitroto (nnm)	5.55 ±	5.9 ±	6.01 ±	5.81 ±	6.15 ±	6.36 ±	7.14 ±	7.28±
Nitrate (ppm)	0.44**	0.48**	0.51**	0.46**	0.54**	0.57**	0.61**	0.63**
TDS (ppm)	163 ± 5***	205 ± 7***	235 ± 9***	190 ± 6***	212 ± 4***	175 ± 3***	180 ± 7***	185 ± 4***
TSS (ppm)	130 ± 9***	235 ± 9***	209 ± 10***	156 ± 8***	182 ± 7***	162 ± 5***	172 ± 3***	177 ± 1***
TH (ppm)	126 ± 1**	190 ± 6**	152 ± 2**	172 ± 5**	136 ± 3**	148 ± 6**	156 ± 1**	144 ± 5**
								Contd

Contd....

Parameters				Samplin	g Weeks			
	Week-9	Week-10	Week-11	Week-12	Week-13	Week-14	Week-15	Week-16
Temperature	26.73 ±	24.63 ±	28.03 ±	21.8 ±	26.23* ±	22.4 ±	25.66 ±	28.84 ±
(°C)	1.09***	0.91***	1.35***	0.62***	1.95***	1.1***	0.95***	0.85***
pH (H+)	7.3 ±	7.5 ±	8.01 ±	7.2 ±	8.02 ±	7.9 ±	8.04 ±	7.2 ±
pri (II+)	0.27**	0.38**	0.71**	0.33**	0.75**	0.73**	0.74**	0.33**
DO (mg/L)	11.2 ±	9.9 ±	10.5 ±	11.5 ±	9.72 ±	9.81	10.71 ±	11.03 ±
DO (IIIg/L)	0.73*	0.48*	0.66*	0.76*	0.61*	±0.52*	0.69*	0.71*
Chlorido (nom)	27 ±	28 ±	23 ±	21 ±	24 ±	25 ±	20 ±	21 ±
Chloride (ppm)	3**	2**	1**	2**	3**	5**	1**	3**
Nitrite (ppm)	0.71 ±	0.59 ±	0.64 ±	0.42 ±	0.74 ±	0.51 ±	0.65 ±	0.76 ±
Nitrite (ppin)	0.31**	0.08**	0.22**	0.03**	0.23 **	0.04**	0.33**	0.37**
Nitrate (ppm)	6.42 ±	5.31 ±	7.23 ±	6.27 ±	5.7 ± 0.	7.29 ±	7.14 ±	7.34 ±
Millale (ppill)	0.51**	0.42**	0.63 **	0.54**	43**	0.65**	0.66**	0.61**
TDC (nom)	165 ±	194 ±	210 ±	221 ±	229 ±	234 ±	125 ±	219 ±
TDS (ppm)	2***	1***	8***	3***	1***	7***	2***	6***
	180 ±	184 ±	165 ±	179 ±	148 ±	169 ±	206 ±	198 ±
TSS (ppm)	4***	6***	3***	1***	2***	3***	7***	3***
	159 ±	164 ±	142 ±	154 ±	167 ±	143 ±	157 ±	168 ±
TH (ppm)	4**	7**	3**	2**	5**	4**	6**	5**

DO (Dissolved Oxygen); TDS (Total Dissolved Solids); TSS (Total Suspended Solids); TH (Total Hardness). Most of the values were statistically different from each other.*(p < 0.2), **(p < 0.05), ***(0.0005).

Fish Diversity

During sixteen-week research duration, a total of 14,610 fishes of about 12 species were collected from the study area. The details of the collected fishes from February, 2020 to May, 2020 is given in Table **3**. Among them, 5 species belonged to the family Cyprinidae, 2 belonged to family Bagridae and 1 species belonged to each of Cichlidae, Allidae, Siluridae, Mastacembellidae and Channidae.

For analysis of fish data, different diversity indexes were applied. Amongst them, Simpson Diversity Index (D) was highest in the 7th week (5.89), Species Richness Index was highest during the 5th week (0.45), Shanon Diversity Index (H) was highest during the 7th week (2.08), and Species evenness Index was highest during the 5th week (2.56). The details of these indexes on weekly basis are given in Table **4**.

Table 3. Fish Diversity and Population at Chashm	a Barrage Recorded Each Week ((Total 16 weeks).
--	--------------------------------	-------------------

	Fish	1 st	2 nd	3rd	4 th	5 th	6 ^t	h	7 th	8 th
Family	Species	wk.	—	wk.	wk.	•	-		wk.	wk.
	Labeo gonius	245	311	349	289	216	5 22	25	239	301
	Labeo rohita	7	11	18	16	23	18	8	14	19
Cyprinidae	Cyprinus carpio	203	238	217	264	171	34	0	219	382
	Hypophthalmichthys molitrix	21	27	34	24	15	18	8	25	15
	Catla catla	12	16	30	27	23	32	2	41	50
Siluridae	Wallago attu	39	30	52	23	44	3	5	43	52
Channidae	Channa marulius	10	14	21	13	10	1:	2	16	23
Ailiidae	Clupisoma garua	35	39	46	40	38	44	4	49	57
Mastacembellidae	Mastacembelus armatus	21	26	49	22	20	3	1	44	53
Cichlidae	Oreochromis niloticus	70	74	51	46	40	5	6	60	72
Bagridae	Rita rita	49	53	62	55	49	5	6	59	66
	Sperata seenghala	33	46	20	35	52	2	9	39	19
Grand Total		745	885	949	854	701	89	6	848	1109
%age population		5.1	6.1	6.5	5.85	5 4.8	2.7	71	5.8	7.59
	Fish	9 th	10 th	11 th	12 th	13 th	14 th	15 th	16 th	
Family	Species	wk.	wk.	wk.	wk.	wk.	wk.	wk.	wk.	Total
	Labeo gonius	250	310	350	279	220	237	257	320	4398
	Labeo rohita							201	520	4000
	Labeo Ionita	23	26	18	14	9	12	19	22	269
Cumrinidaa	Cyprinus carpio	23 379	26 346	18 297	14 286					
Cyprinidae						9	12	19	22	269
Cyprinidae	Cyprinus carpio Hypophthalmichthys	379	346	297	286	9 300	12 294	19 283	22 312	269 4531
Cyprinidae Siluridae	Cyprinus carpio Hypophthalmichthys molitrix	379 20	346 29	297 35	286 42	9 300 34	12 294 26	19 283 19	22 312 28	269 4531 412
	Cyprinus carpio Hypophthalmichthys molitrix Catla catla	379 20 61	346 29 55	297 35 48	286 42 35	9 300 34 29	12 294 26 19	19 283 19 16	22 312 28 50	269 4531 412 544
Siluridae	Cyprinus carpio Hypophthalmichthys molitrix Catla catla Wallago attu	379206150	346 29 55 46	297 35 48 53	286 42 35 47	9 300 34 29 39	12 294 26 19 28	19 283 19 16 33	22 312 28 50 47	269 4531 412 544 661
Siluridae Channidae	Cyprinus carpio Hypophthalmichthys molitrix Catla catla Wallago attu Channa marulius	 379 20 61 50 25 	 346 29 55 46 21 	297 35 48 53 24	286 42 35 47 29	9 300 34 29 39 20	12 294 26 19 28 16	19 283 19 16 33 19	22 312 28 50 47 22	269 4531 412 544 661 295
Siluridae Channidae Ailiidae	Cyprinus carpio Hypophthalmichthys molitrix Catla catla Wallago attu Channa marulius Clupisoma garua Mastacembelus	 379 20 61 50 25 40 	 346 29 55 46 21 49 	297 35 48 53 24 36	286 42 35 47 29 42	9 300 34 29 39 20 50	12 294 26 19 28 16 59	19 283 19 16 33 19 44	22 312 28 50 47 22 53	269 4531 412 544 661 295 721
Siluridae Channidae Ailiidae Mastacembellidae	Cyprinus carpio Hypophthalmichthys molitrix Catla catla Wallago attu Channa marulius Clupisoma garua Mastacembelus armatus Oreochromis	 379 20 61 50 25 40 48 	346 29 55 46 21 49 32	297 35 48 53 24 36 29	286 42 35 47 29 42 35	9 300 34 29 39 20 50 46	12 294 26 19 28 16 59 50	19 283 19 16 33 19 44 41	22 312 28 50 47 22 53 55	269 4531 412 544 661 295 721 602
Siluridae Channidae Ailiidae Mastacembellidae Cichlidae	Cyprinus carpio Hypophthalmichthys molitrix Catla catla Wallago attu Channa marulius Clupisoma garua Mastacembelus armatus Oreochromis niloticus	 379 20 61 50 25 40 48 80 	346 29 55 46 21 49 32 79	297 35 48 53 24 36 29 55	286 42 35 47 29 42 35 48	9 300 34 29 39 20 50 46 50	12 294 26 19 28 16 59 50 68	19 283 19 16 33 19 44 41 73	22 312 28 50 47 22 53 55 80	269 4531 412 544 661 295 721 602 1002
Siluridae Channidae Ailiidae Mastacembellidae Cichlidae	Cyprinus carpio Hypophthalmichthys molitrix Catla catla Wallago attu Channa marulius Clupisoma garua Mastacembelus armatus Oreochromis niloticus Rita rita Sperata seenghala	 379 20 61 50 25 40 48 80 26 24 	346 29 55 46 21 49 32 79 21 32	297 35 48 53 24 36 29 55 18	286 42 35 47 29 42 35 48 10	9 300 34 29 39 20 50 46 50 22	12 294 26 19 28 16 59 50 68 17	19 283 19 16 33 19 44 41 73 23	22 312 28 50 47 22 53 55 55 80 25	269 4531 412 544 661 295 721 602 1002 611

Diversity	1 st	2 nd	3 rd		4 th	5 th	6 th	7 th	8 th
Indexes	wk.	wk.	wk.	,	wk.	wk.	wk.	wk.	wk.
No. of Individuals	745	885	949		854	701	896	848	1109
Simpson Diversity (D)	4.91	4.67	4.86	6	4.46	5.63	4.49	5.89	4.76
Species Richness (S)	0.44	0.41	0.38	3	0.41	0.45	0.4	0.41	0.36
Shanon Diversity (H)	1.92	1.9	1.96	6	1.87	2.04	1.89	2.08	1.92
Evenness (H/In(S))	2.34	2.13	2.03	3	2.1	2.56	2.07	2.33	1.88
Diversity	9 th	10 th	11 th	12th	13 th	14 th	15 th	16 th	Total
Diversity Indexes	9 th wk.	10 th wk.	11 th wk.	12th wk.	13 th wk.	14 th wk.	15 th wk.	16 th wk.	Total
-	•				-		-		Total 14610
Indexes	wk.	wk.	wk.	wk.	wk.	wk.	wk.	wk.	
Indexes No. of Individuals	wk. 1026	wk. 1046	wk. 1007	wk. 896	wk . 855	wk. 872	wk. 866	wk. 1055	14610
Indexes No. of Individuals Simpson Diversity (D)	wk. 1026 4.73	wk. 1046 4.68	wk. 1007 4.57	wk. 896 4.68	wk. 855 4.85	wk. 872 4.83	wk. 866 4.72	wk. 1055 5.06	14610 77.79

Table 4. Different Diversity Indexes Calculated from the Samples (Total 16 weeks).

DISCUSSION

Water Quality Parameters

The primary importance was given to the temperature. Temperature variation can regulate various metabolic activities of fishes and thus, it has vital importance to study ichthyofauna diversity. The water of Chashma Barrage was close to optimum temperature range i.e. 25-30°C. The maximum temperature was 28.84°C while the minimum was 21.8°C (Fig. 2). It has also been reported previously that Chashma Barrage has characteristic annual temperature, with increased degrees in summer and decreased degrees in winter. Increase in temperature in summer has been observed to be correlated with increased parasite infestation²¹.

The measured mean values of temperature were within the optimum range (25-30 °C) which supports maximum fish growth rate, resistance to certain diseases, and tolerance under unfavorable conditions. The pH values are also supportive for fish growth. The pH of fish blood is 7.4 and it needs a pH range of 7-8.5 for maximum production. Here, the recorded mean pH value range was pH 7.2-8.05 which

is suitable for optimum fish growth. An increase in pH also correlates with increased parasite infestation²¹.

Similarly, oxygen concentration plays vital role in aquatic system functionality²⁵ as an increase or decrease in oxygen level in lakes effect many biological, chemical, and physical processes²⁶. Dissolved oxygen concentration is mainly added by phytoplankton and it was found slightly higher than normal range in the present study. For the growth and survival of aquatic organisms, a 5.3 to 8.0mg/L of DO levels are satisfactory²⁷. Decrease in oxygen levels below normal may restrict fish movement and limit numbers of fish and their variety in the lake's bottom waters²⁸.

Other than that, sediments can alter water quality and characteristics. Nitrates and nitrites are also present in Chashma Barrage water as indicated in Fig. **2**. Nitrites were not in abundance as their excessive amount is highly toxic for fish growth. As compared to nitrites, nitrates were in more abundance because they are not toxic for the fish and they are produced by the oxidation of nitrites. Previously, it has been reported that an increase nitrite concentration in the month of May was recorded up to

0.26mg/L, which indicates poor water quality. In freshwater fish pond, the tolerable nitrite level is 0.001mg/L to 0.004mg/L²⁹. Chloride ions in water maintain osmotic balance within the cells of fish. All these parameters were not always at constant rate and their concentrations fluctuate with the change in environmental factors like temperature and turbidity.

However, water hardness causes stress and osmotic shock which can result in death. Total dissolved solids and total suspended solids were in favorable range and they do not cause much turbidity that hinders light penetration and oxygen availability to the fishes. Figure **3** shows the minimum, maximum and mean values of all these parameters that account for water turbidity.

Diversity of Fish Species

This research was based on a 16-week study which was conducted from February, 2020 to May 2020. During the research period, 12 fish species were identified from Chashma Barrage every week and a total of 14,610 species were collected as indicated in Table **3**. With respect to percent values, 69% of entire sample population belonged to the family Cyprinidae (five species), 8.04% of the entire sample population belonged to family Bagridae

(two species), 6.85% of entire sample population belonged to each of Cichlidae (one species), 4.92% of entire sample population was of Allidae family, 4.52% of entire sample population was of Siluridae family, 4.11% of entire sample population was of Mastacembellidae family and 2.02% of entire sample population belonged to Channidae family as shown in Fig. **4**, hence indicating Cyprinidae family as the dominant one in Chashma Barrage.

Diversity Indexes

Simpson Diversity Index was highest during the 7th week (5.89) followed by 5th week (5.63) and 16th week (5.06), while it was minimum in 4th week (4.46). Species Richness Index was highest during the 5th week (0.45) followed by 1st week (0.44) and (0.41) in 2nd, 4th, 7th, and 13th week, respectively, and was lowest during the 6th, 12th, 14th and 15th week. Shannon Diversity Index (H) was maximum in the 7th week (2.08) and minimum in 4th week (1.87). Maximum value of Evenness Index was recorded highest in the 5th week (2.56) and lowest in the 8th week (1.88). All the mentioned values are given in Table **4**. Shannon Diversity Index values resided between 0-1.

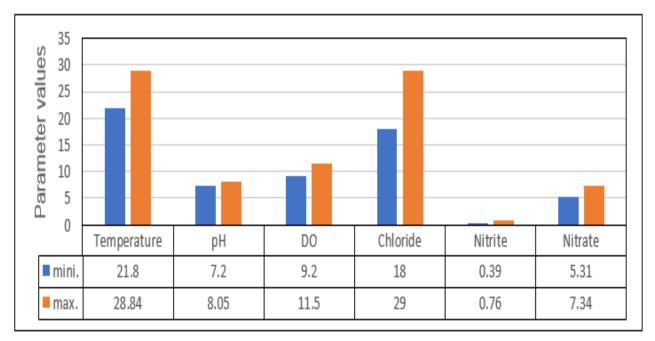


Figure 2. WQ parameters; Temp, pH, DO, Cl-, NO_{2⁻}, NO_{3⁻} (mean range from minimum-maximum).

142

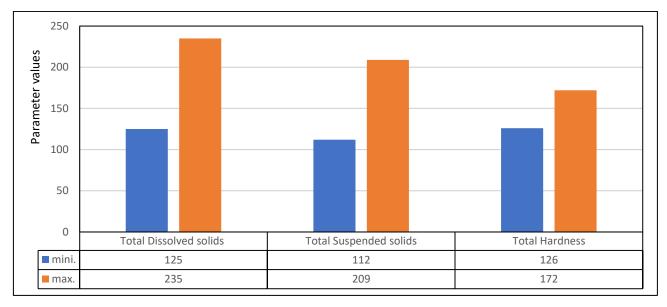


Figure 3. WQ parameters; TDS, TSS, TH (mean range from minimum-maximum).

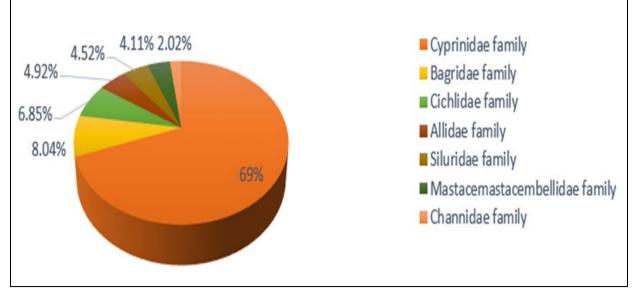


Figure 4. Family wise catch composition of fish diversity at Chashma Barrage from February, 2020 to May, 2020.

CONCLUSION

The Water quality parameters of Chashma Barrage were highly suitable for fish diversity. The temperature was optimum to support fish growth. Cyprinidae family was dominant having 5 species. Similarly, results of diversity indices showed maximum fish diversity along with significant specie richness and evenness in Chashma Barrage. In future, this research would be useful to study further ichthyofauna diversity as it changes with the WQ parameters. The water characteristics are prone to changings due to anthropogenic activities and fluctuating environmental conditions. Chashma Barrage supports a variety of fish species with maximum richness, proper management and public awareness would optimize fish growth at a rapid rate.

CONFLICTS OF INTEREST

None.

FUNDING SOURCE

None.

ACKNOWLEDGMENTS

We would like to thank the Laboratory of Agriculture Tech. Iskandrabad, for providing analysis facilities of physiochemical parameters of water. We also want to thank our respected teachers Madam Saman Qayum, Madam Asma Zahid and Madam Huma Asif for always being the source of inspiration and for providing guidance and moral support throughout this study.

LIST OF ABBREVIATIONS

- AOAC Analysis of the Association of Chemists
- DO Dissolved Oxygen
- TDS Total Dissolved Solids
- TSS Total Suspended Solids
- TH Total Hardness
- Wk. Week

REFERENCES

- Altaf M, Javid A, Khan AM, Hussain A, Umair M and Ali Z. The status of fish diversity of River Chenab, Pakistan. J Ani Plant Sci. 2015; 25(3):564-69.
- Rankhamb S.V. Ichthyofaunal diversity of Godavari River at Mudgal Tq. Pathri, Dist. Parbhani. Rec Res Sci Tech. 2011; 3:11-13.
- Rafique M, Khan HN. Distribution and status of significant freshwater fishes of Pakistan. Zool Surv Pak. 2012; 21:90-5.
- Mirza MR, Mirza ZS. Longitudinal zonation in fish fauna of the Indus River in Pakistan. Biol. 2014; 60:149-52.
- 5. Mirza MR. Freshwater fishes and zoogeography of Pakistan. Bijdr Dierk. 1975; 45:143-80.
- Mirza MR. History of Ichthyology in Pakistan. Biol. 1978; 24:305-48.
- Mirza MR. The Systematic and zoogeography of freshwater fish of Pakitan and Azad Kashmir. Proc Ist Pak Congr Zool. 1980; 1:1-44.
- 8. Mirza MR. Freshwater fishes in Pakistan. Urdu Science Board, Lahore. 1990.
- Mirza MR. Distribution of freshwater fishes of Pakistan and Azad Kashmir. Proc Sem Aqua Dev Pakistan. 1993; 1-45.

- 10. Mirza MR. Fishes of River Jhelum in Sargodha District. Biol. 1994; 33:353-62.
- 11. Mirza MR, Sandhu. Fishes of the Punjab, Pakistan. Polymer Publications, Pakistan. 2007.
- Rafique MG. Fish diversity and distribution in Indus River and its drainage system. Pak J Zool. 2000; 32:321-32.
- Iqbal HH, Shahid N, Qadir A, Ahmad SR, Sarwar S, Ashraf MR, *et al.* Hydrological and ichthyological impact assessment of Rasul Barrage, River Jhelum, Pakistan. Polish J Environ Stud. 2017; 26(1):107-14.
- Elahi N, Ahmed Q, Bat L, Yousuf F. Physiochemical parameters and seasonal variation of coastal water from Balochistan Coast, Pakistan. J Coast Life Med. 2015; 3(3):199-203.
- Rehman HU, Khan F, Usman K, Sadia H, Raza S, Ali U, *et al.* Fish biodiversity and physiochemical assessment of River Kurram at District Bannu KP, Pakistan. Int J Biosci. 2019; 15(1):295-301.
- Habib SS, Rehman HU, Naz S, Sadia H, Raza S, Malik MZ, *et al.* Effect of some basic physiochemical parameters of water on diversity of ichthyofauna in Jinnah Barrage, Mianwali district Punjab, Pakistan. Int J Biosci. 2019; 15(1):438-46.
- Bibi F, Mudassar MN, Ahmad AN, Akhter M. Freshwater fish diversity and their conservation status in Southern Punjab, Pakistan: A Review. Pak J Life Soc Sci. 2018; 16(2):59-71.
- Ali M, Abdus S, Nadeem A, Bakht Y, Ali K, Muhammad YK. Monthly variation in physicochemical characteristics and metal contents of Indus River at Ghazi Ghat, Muzaffargarh, Pakistan. Pak J Zool. 2004; 36:295-300.
- Hossain, MA. Studies on the limnology and primary production of a tropical lake in India. Hydrobiol. 1990; 30:335-52.
- Shresta GB. Status of epizootic ulcerative syndrome (EUS) and its effects on aquaculture in Nepal. Proceedings of the ODA Regional Seminar on Epizootic Ulcerative Syndrome, (eds. R.J. Roberts, B. Campbell and I. H. Mac Rae). Aquatic Animal Health Research Institute, Bangkok, Thailand. 1994; 49-57.
- Ahmad I, Afshan K, Ramzan M, Hayat S, Rizvi SSR and Qayyum M. Effect of Water Quality Parameters on Isopod Parasite Alitropus typus (Aegidae) of Ectotherms in Chashma Lake, Pakistan. Pak J Zool. 2016; 48(3):769-79.

- Ayub H, Ahmad I, Shah SL, Bhatti MZ, Shafi N, Qayyum M. Studies on seasonal and spatial distribution of zooplankton communities and their diversity indices at Chashma Lake, Pakistan. Pak J Zool. 2018; 50(4):1293-98.
- Emmanuel J, Joshua G and Shams SB. Comparative study of ecological conditions of four wetlands of punjab using macroinvertebrates as bioindicators. J Ani Plant Sci. 2012; 22(4):908-14.
- 24. Jabeen S, Chaudhary SA. Monitoring trace metals in different tissues of *Cyprinus carpio* from Indus River of Pakistan. Environ Mon Assess. 2010; 645-56.
- Galal-Gorchev H. Ozolins G, Bonnefoy X. Revision of the WHO guidelines for drinking water quality. Annl Inst Super Sanit. 1993; 29:335-45.

- Kazi TG. Arain M B, Jamali MK, Jalbani N, Afridi HI, Sarfraz RA, *et al.* Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol Environ Saf. 2009; 72:301-9.
- Chennakrishnan C, Stephen A, Manju T, Raveen R. Water quality status of three vulnerable freshwater lakes of Suburban Chennai, India. Ind J Environ Ecoplan. 2008; 15:591-96.
- 28. Illinois Environmental Protection Agency, 1998. DWPC-Lake and Watershed Unit.
- 29. Boyd CE. Water quality management for pond fish culture. Development in aquaculture and fisheries science. Elsevier. 1982; 318-25.