Anti-Proliferative Effect of Arsenic, Cadmium and Lead on Human Placental Cells

Aftab Ahmad1*, Aamina Shahm2, Abdul Rauf Shakoori1

1School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore. Pakistan.
2Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.

ABSTRACT

Heavy metals are ubiquitously distributed in the environment and can affect human health. Some of these heavy metals can even cross placenta and cause harm to developing fetus. In the present study we investigated the anti-proliferative effects of arsenic, cadmium and lead on human placental cells (PCs). PCs were isolated from placental tissue and cell line was developed. Anti-proliferative effects of arsenic, cadmium and lead were tested by neutral red uptake assay. Both arsenic and cadmium proved to be very toxic for PCs. There was marked decrease in cells proliferation when cells were exposed to metal concentrations for a period of 24 hrs. Reduction in proliferation was recorded on exposure to lead but the effect of lead was not as severe as arsenic and cadmium. Arsenic, cadmium and lead are very toxic for PCs. Proper measures should be taken for the disposal of heavy metals to protect the environment and humans from exposure.

Keywords: Placental cells, Heavy metals, Proliferation, Cytotoxicity, Morphology.

INTRODUCTION

During pregnancy placenta, amniotic fluids and fetal membranes help in growth and development of fetus by facilitating exchange of gases, nutrients, and waste products between mother’s circulation and fetus (Gude \textit{et al.}, 2004; Kippler \textit{et al.}, 2010). Placenta also prevents pollutants and harmful substances from entering into fetus with the help of macromolecular protein complexes present on its cell membrane (Osman \textit{et al.}, 2000; Kuhnert \textit{et al.}, 1987). Placenta is also known as dual marker in case of certain heavy metals that can affect the fetus (Iyengar and Rapp, 2001).

Cadmium exposure to human occurs by cigarette smoking, consumption of polluted food including cereals, vegetables, nuts, pulses, starchy roots or potatoes, meat, meat products and contaminated water (Zenzes \textit{et al.}, 199; Jarup \textit{et al.}, 1998) and retains in placenta with the help of metallothionin and does not enter in fetus (Brambila \textit{et al.}, 2002). But cadmium alters placental transport of calcium and zinc, causes early decidualization of human endometrial stroma cells, inhibits trophoblast cell migration by affecting actin cytoskeletal organization, reduces leptin synthesis, enhances corticosterone concentrations and interferes with placental progesterone production (Ronco \textit{et al.}, 2009; Lin \textit{et al.}, 1997; Tsutsumi \textit{et al.}, 2009; Alvarez and Chakraborty, 2011; Stasenko \textit{et al.}, 2010; Kawai \textit{et al.}, 2002). Endoplasmic reticulum (ER) is essential for survival and normal functioning of cells and cadmium also has an effect on ER (Ferri and Kroemer, 2001; Rao \textit{et al.}, 2004). ER chaperons causes the folding of nascent proteins but if these client proteins exceed the chaperons, ER undergoes stress which in turn reduces the placental development and fetal growth (Iwawaki \textit{et al.}, 2009; Lian \textit{et al.},...
If the fetus is exposed to cadmium then it can impair child’s IQ, birth weight, birth length and head circumference (Tian et al., 2009; Gonzalez-Cossio et al., 1997; Salpietro et al., 2002; Osman, 2000; Ronco et al., 2009; Gundacker et al., 2010; Zhu et al., 2010; Lin et al., 2011). Cadmium toxicity is found to be responsible for this stress related damage to placenta (Wang et al., 2012). Since Cadmium has a long half-life in the human body; the placental burden is affected by the length of gestation (Kantola et al., 2000).

Arsenic is a metalloid that occurs in environment both naturally and due to human activities. It is present in glasses, pesticides, food preservatives and pigments etc. Human are exposed to arsenic via contaminated drinking water, rice, other grains and fish etc. (ACSH, 2002). The two oxidation states of inorganic arsenic, arsenite (AsIII) and arsenate(AsV) can cross and accumulate in placenta (DeSesso et al., 1998; Lindgren et al., 1984) upto a level five folds more than control (Concha et al., 1998a). Its accumulation can have deleterious vascular effects leading to placental abnormalities and less flow of blood which eventually lead to retarded fetal growth (Hopenhayn et al., 2003). Higher exposure to arsenic causes increased miscarriage rates, premature deliveries and lower birth rates (Aschengrau et al., 1989).

If the pregnant lady is exposed to lead contaminated air or food then lead may cross the placenta to enter into fetus by passive diffusion (Goyer, 1990) and accumulates in syncytiotrophoblast cells of placenta and minimise cytochrome oxidase activity (Reichrtova et al., 1998), thus may cause neurodevelopmental disorders and subclinical brain dysfunction in neonates.

Transportation of lead and cadmium through placenta occurs by binding to glutathione (GSH) forming a complex which is then transfered with the help of ABC family such as MRP1, MRP2 and P-glycoprotein (Gundacker et al., 2010; Thevenod, 2010, UNECB).

In the present study placental cells were used to investigate the effect of heavy metals such as arsenic, cadmium and lead on proliferation and morphology of cells.

MATERIALS AND METHODS

Heavy Metals: Three heavy metals were used in this study including lead, cadmium and arsenic. Stock solutions were prepared and filter sterilized with 0.2 µm filter (Orange Scientific). Heavy metals solutions were stored at room temperature.

Isolation of placental cells (PCs): The placental tissue was collected after normal delivery. The tissue was cut into small pieces and added in sterile phosphate buffer saline (PBS) containing penicillin and streptomycin (20 ml PBS with 1 ml penicillin/streptomycin). The samples was immediately transferred to cell culture lab. The tissue pieces was washed multiples time with PBS and chorion layer of placenta was separated by surgical knife. The placental tissue was cut into small pieces and added the piece on tissue culture dish. Let the tissues to adhere for short time (5min) and completed medium (DMEM containing glutamine, 10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin) was added. The dish was incubated in CO2 incubator at 37oC with 5% CO2 in humidified environment. Observe the dish on daily basis to see migrating cells from tissue.

Cell Culture and CV Staining: When enough cells migrated out from tissue explants, the explants were removed and cells were treated with Trypsin-EDTA (GIBCO, USA). The numbers of cells were counted and cultured them into new culture flasks under standard culturing conditions. When cells became confluent, the cells were stained with crystal violet (CV) (Sigma). For staining, cells were washed twice by PBS, stained with 0.5% CV solution for 5-10 min. The stain was removed from plate with dH2O, until no stain come out. Images were taken by inverted microscope.

Cytotoxicity assay: PCs were cultured in 75 cm2
tissue culture flask. The cells were incubated for 24 hrs at 37°C in a humidified environment with 5% CO2 to grow the cells in monolayer. When cells grew to 90% confluency, they were washed with PBS, trypsinized with 1X Trypsin-EDTA. The cells were counted with hemocytometer and 5 x 10^3 cells were added in each well of 96 wells plate with a total volume of 200 µl of complete DMEM medium. Cells were incubated for 24 hrs at 37°C in a 5% CO2 incubator with humidified environment. The old medium was replaced by 200 µl of fresh medium containing 0-10 µg/ml cadmium, 0-10 µg/ml arsenic and 0-100 µg/ml lead respectively and incubated the plates under the same culture conditions for 24 hrs. Cytotoxic effects were tested by neutral red uptake method. Aspirate treatment medium and incubated cells with Neutral red medium for 3 h at 37°C. Cells were washed twice with PBS and 150 µl of Neutral red destain solution was added in each well and put the plate on shaker at 100 rpm for 10 min. The supernatant was taken and measured the differential absorbance at 492 nm and 630 nm using ELISA reader (Humareader plus, HUMAN). All assays were done in triplicate.

RESULTS

Isolation and Crystal Violet Staining of PCs: When explant were cultured under standard culture condition, cells started moving out from explant after 3 days and in 5 days they covered the surface of whole plate. Cells were trypsinized and cultured again. Initially the cells were showing spindle shaped morphology and also these were very rapidly dividing cells.

When cells were stained with CV to observe the morphology of cells after 2nd passage, the cells were appearing in between the spindle and flattened shape (Fig. 2).

Cytotoxic effect of arsenic, cadmium and lead on PCs: PCs were exposed to different concentration of arsenic, cadmium and lead for 24 hrs but all the metals have different effect on proliferation of PCs.

DISCUSSION

In the present study we investigated in vitro effect of three heavy metals on human placental cells. A significant difference in arsenic content in the human placenta under exposed (5.9 ng/g) and non-exposed (2.6 ng/g) environmental conditions have been demonstrated (Iyengar and Rapp, 2001). It was observed in this study that when PCs were exposed to arsenic for 24 hrs, its effect was most severe compared to other heavy metals used in this study.
on proliferation as indicated with the measurement of LC50 which came out to be 2.52µg/ml. When inside the cells arsenic mainly effects mitochondria, this result in changes in the trans-membrane potential and ultimately leads to death of cells (Haga et al., 2005).

Cadmium also proved to be fatal for PCs but to a lesser extent than arsenic. On exposing PCs to cadmium for a period of 24 hrs the LC50 was calculated to be 6.2µg/ml. According to a study the average concentration of cadmium under non-exposed environmental conditions was 4 ng/g, with a range of 1–6 ng/g based on the wet weight of placenta (Iyengar and Rapp, 2001). The placental cells causes interruption in cadmium passage either completely or partially (Baranowska, 1995; Kuhnert et al., 1982; Roels et al., 1978; Schramel et al., 1988; Korpela et al., 1986; Needham et al., 2011) so there are chances that fetus get exposed to cadmium when higher level of cadmium is present inside the maternal body. According to different studies increase in double-stranded RNA-activated kinase (PKR)-like ER kinase (PERK)-eIF2a signaling is associated with decreased cellular proliferation in placenta (Lian et al., 2011) which is enhanced due to cadmium exposure (Wang et al., 2012).

Effect of lead was found to be much different than that of arsenic and cadmium and that could be due to permeability of lead to PCs. On exposure to lead for 24 hrs, the percentage reduction in proliferation of cells was calculated to be 46%. The average concentration of lead in placental tissue is approximately 34 ng/g, (normal range 5–60 ng/g) (Iyengar and Rapp, 2001). There does not exist maternal-fetal barrier for lead and thus level of lead in fetus blood is nearly equal to maternal blood lead level (Goyer, 1990), so lead exposure to mother during fetal development could be very deleterious for the health of developing fetus especially on nervous system.

Heavy metals are present in environment and it is very hard to avoid exposure of heavy metals. The exposure of heavy metals during pregnancy is great concern because it is not only dangerous for the life of mother but it could be lethal for developing fetus. The present study was conducted to show the anti-proliferative activity of arsenic, cadmium and lead on human PCs. It was concluded that among these heavy metals arsenic is the most toxic heavy metal for PCs as it had maximum anti-proliferation effect, followed by cadmium and least anti-proliferative effect was observed in the case of lead. There is an alarming increase of heavy metals in environment in developing countries and it can result in many abnormalities and malignancies in human and this is also a serious danger to our future generations.
REFERENCES

elements in placenta and placenta as a biomarker for these elements. Science of the Total Environment 280:221–38.

CALL FOR PAPERS

RADS Journal of Biological Research and Applied Sciences welcomes the submission of research papers, review articles and short communications in the following subject fields:

- Biochemistry
- Biotechnology
- Botany
- Chemistry
- Environmental Science
- Medical & Health Sciences
- Microbiology
- Molecular Biology
- Pharmacy
- Physics
- Zoology
- Clinical Research

Our aim is to provide a platform for budding scientists researchers, research scholars, academicians etc. to present their research findings in the field of biological and applied sciences.

Note: All manuscripts should be sent by an e-mail to the editor with your mobile number
rads@juw.edu.pk or deanresearch@juw.edu.pk

Publication is free of cost