Opuntia ficus-indica as Nutritious Food Ingredient; Prevalence for Therapeutic Specialty

Saniya Ramzan1,*, Maryam Saeed2
1National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
2Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.

ABSTRACT

Background: It is predicted that the world's population, specifically in arid and semi-arid regions, usually with complications such as water scarcity, climate change, soil erosion, and wind erosion, is facing food insecurity issue. Moreover, the outbreak of several diseases is further a burden on the people living in such areas. The growth of improved crop varieties which is compatible with agro-climatic conditions of the site such as Opuntia ficus-indica is the ray of hope. Multipurpose native crops like Opuntia ficus-indica is cultivated owing to it is drought tolerant ability and growth in different ranges of the environment. Furthermore, it has natural components that can not only be served as food but also the therapeutic ability for numerous diseases.

Objectives: The purpose of this review is concerning global issues such as food insecurity, malnutrition and their solution through natural products i.e. nutraceuticals. The target is to find one of the numerous approaches that can be adapted to focus on dealing with such problems.

Methodology: Opuntia ficus-indica has various nutraceutical uses that had been utilized in past but can further be accommodated for commercial utilization and public benefit. In this review, the therapeutic aspects of Opuntia ficus-indica have been elaborated with the utilization of its components to fight different diseases. Different studies from various scientists published in the form of research/review articles have been overviewed proving its physico-chemical elements to be beneficial in this aspect.

Results: Opuntia ficus-indica is not only a source of food but also has exponential components that serve as nutraceuticals including phytochemicals such as phenolics, vitamin C, flavonoids, betalains, and carotenoids. These components impart diverse beneficial effects on health and act as anti-ulcerogenic, anti-carcinogenic, antioxidant, hepatoprotective, anti-atherogenic, and immunomodulator.

Conclusion: Opuntia ficus-indica is a miracle of nature that has been bestowed upon us to reduce the risk of many calamities. It can not only be served as food but also imparts beneficial effects on health that not only reduces the chances of getting sick but also helps in alleviating the drastic effects of disease exposure.

Keywords: Antioxidant, Apoptosis, Hepatotoxicity, Fortified, Extract.

*Address of Correspondence: saniyaramzan8@gmail.com

Received: August 14, 2020
Accepted: November 24, 2020

Cite this article: Ramzan S, Saeed M. Opuntia ficus-indica as Nutritious Food Ingredient; Prevalence for Therapeutic Specialty. RADS J Biol Res Appl Sci. 2020; 11(2):130-139.

Funding Source: Nil
Conflict of Interest: Nil

INTRODUCTION

Cacti (singular Cactus) have unique and unusual properties that are adaptive to extremely hot and arid/semi-arid environments. They show a variety of functional and structural characteristics which make them more interesting like water conservation and drought tolerance capabilities. As for drought tolerance ability, it comes from the phenomenon of CO2 fixation capacity (CAM). Moreover, its leaves have the shape of spines,
while the stem is transformed into the succulent structure containing chlorophyll. Commonly, it is native to North America, Venezuela, Bolivia, South Africa, Argentina, Jordan, Israel, and West Indies, but now it is commonly growing in India, Italy, Spain, Mexico, Northern Africa, and the USA where they are now a significant part of people's dietary needs. It can be found in range of the environment from the dessert area below sea level to high altitude areas such as mountains of Peru. The genus *Opuntia* has approximately 300 different species which produces edible fruit varieties but the most important of these are *Opuntia ficus indica*, *Opuntia robusta*, *Opuntia streptocantha*, *O. amyclaea*, *O. megacantha*, *O.hiptiacantha*, and *Opuntia ficus indica* (L) Mill. In different countries, a cactus pear is cultivated for different purposes e.g. to ensure food security (control the wind, water, and soil erosion, utilize as forage and as fence), use in the food processing industry (natural colorant, juice, jam, vinegar, flour, and food supplement), as a pharmaceutical product (essential oils, herbal extracts, in medicine), and in cosmetic industry (seed oil, soap, and shampoo).

Opuntia ficus-indica (L.) Mill., common name: prickly pear/hopal cactus, family: Cactaceae (dicotyledonous angiosperm) is an important cactus species in agriculture of non-irrigated lands due to its utility in food, fodder, dye, source of energy, ecosystem remediation, and prevention of soil erosion. It is also recognized as “fruit for the poor”, “treasure under spines”, “future plant”, “scared plant” and “monster tree” and these names depict its significance in human life. The largest producer of *Opuntia ficus-indica* species in Mexico with 72000 hectare (ha) area under fruit cultivation and 10,500 for nopalitos. In Brazil, North African countries (Morocco, Egypt, Tunisia, Algeria, and Libya) Italy, and Chile, the area under cultivation is 40000 ha, 16000 ha, 2500 ha and 1100 ha respectively. Without any technical involvements, the crop is produced in two seasons per year i.e. February-April and July-September with the covered area of 934.4 ha in Chile. Among African Countries i.e. Algeria, Ethiopia, Morocco, South Africa, Tunisia where *Opuntia* species are grown, Ethiopia is the largest producer of cactus pear with the covered area of 360,000 ha. The major purposes of its cultivation are fencing, delicious fruit, essential oil, pharmaceutical products, food products, cosmetics, livestock feed, and forage. It is a cheap source of food i.e., nopal/cladodes and prickly pear, fodder, and ornamental use. Cladodes are used as salads. Prickly pear is an elongated and fleshy berry having different sizes, color, and shape which can be consumed in the fresh, dried, and preserved form such as syrups, jams, and candy-like products. In most of the West Asian countries, the cactus is established for food and feed production, also utilized as hedges around the houses for enhancing aesthetic value. The modern cactus pear production in Australia is very small around 200 ha and most established in the home gardens. Among the European countries, Italy is famous for its appreciation of *Opuntia ficus-indica* and it was recognized as “bread for poor” and also being used as an emergency fodder. Portugal has also promoted the production of cactus pear and planned to plant on more than 500 ha which was before 200 ha and also made the plan to engage the unemployed persons.

Opuntia ficus-indica contains 92% moisture in addition to 4-6% total fiber and 1-2% protein. It is of great nutritional profile having high sugars i.e., glucose, fructose, and sucrose, other macronutrients like protein, lipid, ash, fiber, and minerals. Moreover, there is an increased amount of free amino acids including glutamine, proline, serine, methionine, arginine, aminobutyric acid, and histidine.

There is considerable amount of bioactive compounds available in *Opuntia ficus-indica* for example ascorbic acid, carotenoids, and taurine. It is known to have pigments and molecules which are usable in nutritive and medicinal aspects that make it among the list of functional foods. These pigments can be classified according to the chromophore structure such as chromophores with conjugated systems i.e. carotenoids, caramel, betalains, lakes, and synthetic pigments, and metal coordinated porphyrins such as chlorophyll and myoglobin. The amount of bioactive compounds in the pulp of cactus pear varies with the variety and place of growth.

Therapeutic Properties

Anti-oxidant Activity

The oxidation process in the body is the stimulant of various diseases. Polyphenols present in *Opuntia ficus-indica* possesses anti-oxidant activity which is divided into flavonoids, stilbenes, phenolic acids, and lignin &...
suberin. Through the interaction of flavonoids with carbohydrates, lipids, and proteins, the oxidation process is inhibited15. According to Slimen14, the mechanisms behind the antioxidant activities of polyphenols are given in Fig 1.

Moreover, Betalains also plays a vital role in antioxidant properties owing to their hydroxyl, imino, and tetrahydropyridine groups. Betalains are pigments present in the vacuole in the form of betalamic acid which condenses and convert into betacyanins (violet color) and betaxanthins (yellow color). In Opuntia ficus-indica these are present in pulp and peel. In the pulp fruit, betanin, betanidin, neobetanin, isobetanin, and indicaxanthin are detected16. While in the peel portion, betanin and indicaxanthin are present. The two pigments betanin and indicaxanthin have the ability to donate their electrons that help in the inhibition of lipid peroxidation and heme disintegration. Betanin is more effective in the radical scavenging process rather than indicaxanthin17. Betanin is another potent antioxidant that acts against nitric acid and peroxyl radical and has additive interaction with α-tocopherol18,19. Yahia & Mondragon-Jacobo7 have concluded during their study that tocopherols and carotenoids are not responsible for the antioxidant activity but phenolic compounds, betalains, and vitamin C are the ones to carry out the antioxidant property. During experimental studies, it has been observed that Opuntia ficus-indica is effective for a decrease in lipid oxidation and an increased amount of antioxidant i.e., reduction in glutathione. This ultimately results in improving the erythrocyte’s redox potential. Hence, 500g of prickly pear supplement on daily basis is effective for lowering the oxidative stress in a healthy person within two weeks20. Similarly, Siriwardhana21 also showed that Opuntia ficus-indica (whole fruit) extract has the potential effect as an antioxidant which helped in 60% decrease in impaired lymphocytes DNA. Hence, the utilization of prickly pear and its products are effective in free radical’s reduction that leads to alleviation in the development of chronic ailments.

Anti-inflammatory and Anti-thrombogenic Properties

The flavonoids present in Opuntia ficus-indica helps in the prevention of inflammation. The mechanism behind this is that they inhibit arachidonic acid metabolism which results in anti-thrombogenic and anti-inflammatory characteristics14. Moreover, isorhamnetin glycosides flavonoids namely isorhamnetin-3-O-glucosyl-rhamnoside (IGR) and isorhamnetin-3-O-glucosyl-rhamnosyl-rhamnoside (IGRR) regulates anti-inflammatory activities by inhibition of the NFκB activation and the COX-2 (Cyclooxygenase-2) gene expression with suppressing the TNF-α production as well. Antunes-Ricardo22 has done the study using alkaline extraction and purification through semi-preparative chromatography of Opuntia ficus-indica and the results suggest that it significantly affects COX-2 and decreased secretion of cytokines and nitric oxide thus exhibiting the anti-inflammatory properties (Fig 2).

![Fig 1. Polyphenols of Opuntia ficus-indica: flavonoids, quercetin and silibin working as antioxidants. (Slimen et al., 2016).](image)

![Fig 2. Flavonoids exhibiting anti-inflammation characteristics in the human body. (Antunes-ricardo et al., 2015).](image)
thrombotic complications; as if phosphatidylserine (PS) is exposed to the surface of eryptotic cells may activate coagulant enzymes which can cause thrombosis and thrombo-occlusive disease. Further, it will also attach to the endothelial cells and cause vascular damage. This problem can be prevented by cactus pear (Opuntia ficus-indica) fruit because polyphenol such as betalamic acid and indicaxanthin obtained from it have the reducing potential and amphipathic in nature, interacts with membranes, enters various cells, including erythrocytes and counteracts oxidative damage induced by various events such as the presence of reactive oxygen species (ROS), the release of prostaglandin (PGE2), the opening of prostaglandin dependent calcium channels and exposure of phosphatidylserine (PS). The indicaxanthin of prickly pear fruit in the concentration range of (1.0-5.0mm) can eliminate the PS externalization and cell shrinkage.

Anti-carcinogenic and Anti-ulcerogenic Characteristics

Opuntia ficus-indica also possesses chemo-preventive activity. It was found effective against the inhibition of cancerous cells. Zou24 has studied the effect of prickly pear extract on tumor cell growth24. He made a comparison of the effects of prickly pear extract and retinoid N-(4-hydroxipermil) retinamide (4-HPR) on cancer cells of cervical, bladder, and ovary. The results showed that there is an obvious increase in cellular apoptosis and inhibition in cancerous cells development (Fig 3).

Fig 3. Prickly pear’s extract working in tumor growth prevention. (Zou et al., 2005).

Furthermore, betanin extract from Opuntia ficus-indica is also beneficial in terms of cellular apoptosis induction. In myeloid leukemia, betalains impose inhibitory action on the cellular growth25. Gastric mucous is a protective layer of gastric cells but if any damage occurs to it, it results in the impairment of cells and many problems such as ulcers, gastritis, and cancer take place. Nonetheless, antioxidants present in the Opuntia ficus-indica have the ability to prevent such problems to arise. Galati26 has studied anti-ulcerogenic effect of Opuntia ficus-indica during a trial on wistar mice. Moreover, the mechanism behind such activity is demonstrated by Jiménez-Aguilar27 that is shown in Fig 4.

Fig 4. Flavonoids bioactivity in gastric ulcer reduction. (Aguilar et al., 2014).

Another study based on the lyophilized cactus pear fruit juice reported that it has certain constituents that work against the stress-induced gastric lesions particularly betanins and Opuntia ficus-indica var. saboten fruit juice and maltodextrin (OFSM). It was proven that it is effective against the prevention of gastric lesions and gastric mucosal tumor (TNF-a factor)28 (Fig 5).

Fig 5. Betanin bioactivity to prevent tumor growth. (Kim et al., 2012).
Immunomodulatory Activity

Human body defence system has the ability to fight the disease causing factors and prevent the body, but there are some causalities like an autoimmune disease where the immune system starts to act against the body organs and tissues for example psoriasis, atopic dermatitis, Type I diabetes and rheumatoid arthritis. Aires26 has conducted the study to find the solution to such a problem and results showed that \textit{Opuntia ficus-indica} has immune-modulatory effects which are attained by minimizing Jukart T cell multiplication (Fig 6).

![Pathway of polyphenolic compounds of \textit{Opuntia ficus-indica} acting as immunity boosters. (Aires et al., 2004).](image)

Fig 6. Pathway of polyphenolic compounds of \textit{Opuntia ficus-indica} acting as immunity boosters. (Aires et al., 2004).

Hepatoprotection

Liver is a fundamental human body organ as its major role is to detoxify, bile excretion, protein and fat metabolism, and storage of carbohydrates and vitamins. \textit{Opuntia ficus-indica} has proven to be effective for the protection and cure of liver functionality. Galati30 has worked on the \textit{Opuntia ficus-indica} fruit juice for its evaluation of protective working against carbon tetrachloride (CCl\textsubscript{4}) induced hepatotoxicity and found that injury caused by CCl\textsubscript{4} was cured in 72hrs. Similarly, Djerrou31 find out that CCl\textsubscript{4} induced hepatotoxicity, can be cured by using aqueous extract of \textit{Opuntia ficus-indica}. In the results, it was prominent that there was a raised value of aspartate ammonia transferase and alanine ammonia transferase in the groups intoxicated with CCL\textsubscript{4} dose which indicate \textit{Opuntia ficus-indica} aqueous extract’s hepatoprotective capability.

Cellular Membrane Protection

Cladodes of \textit{Opuntia ficus-indica} are identified for having three carotenoids including β-carotene, lutein, and α-cryptoxanthin. The highest content of carotenoids was detected in orange color cultivars. While in the case of young cladodes the values fall in 0.047 to 0.077mg/100g range and for fruits, the concentration varies between 1.77mg/100g and 2.65mg/100g. The peeling part contains 2.97mg/100g of carotenoids32. Carotenoids and xanthophylls like zeaxanthin, cryptoxanthin, s-carotene, lycopene, and α-carotene are potential singlet oxygen (\textit{1}O\textsubscript{2}) and peroxyl radical quenchers. They scavenge the peroxyl radical and make them stabilized in the form of carbon-centered radical. Moreover, they possess lipophilic properties. Both of these characteristics make them vital for the protection from oxidative impairment of cellular membranes and lipoproteins14. Cactus pear was used in traditional medicine for their cicatrisant activity. The cladodes of \textit{Opuntia ficus-indica} have carbohydrate polymers such as a mixture of mucilage and pectin. The results showed that its cladodes, particularly pectic polysaccharide has the crypto-protection phenomenon by breaking the epithelial cell, increased mucus production, and enhance the number of secretory cells. Ulcer healing is either through regeneration or migration of cells which results in thickening the mucus membrane33.

Gastrointestinal Tract

Recently, cactus cladodes are considered as fiber source for human consumption as its powder contains 43% fiber including 28.5% of insoluble fiber. Soluble fibers can impose potential health benefits as they stabilize the intestinal food transit. Moreover, insoluble fibers such as hemicellulose, cellulose, and lignin are beneficial for microbiota, water retention, bile acid absorption, and ionic exchange14. Sánchez-Tapia34 has checked the prebiotic effect of Nopal (\textit{Opuntia ficus-indica}) and the results of the study suggest that more consumption of high fat and high sugar food, enhance the chances to get affected with the conditions such as obesity, gut dysbiosis, inflammation, and gut barrier disruption. The reason is the disturbance in the balance of gut microbiota. Nopal is a rich source of dietary fibers, vitamin C, and polyphenols which are effective in the reduction of obesity by...
regulating the gut micro-biome and prevent metabolic endotoxemia.

Blood Glucose and Cholesterol

Opuntia ficus-indica cladodes have soluble fibers including gums, pectin, mucilage, and hemicellulose that help in the lowering of cholesterol level and glycemic index in humans. Poly saccharides, alkaloids, neobetanin, indicaxanthin, and flavonoids extracted from cladodes are capable with special effects of antidiabetic and antiglycation. The redox imbalance is one of the main factors leading to the induction of a genetic basis for diabetes. Berraoouan suggested that *Opuntia ficus-indica* seed oil have a high amount of polyunsaturated components and antioxidant compounds which are useful against the diabetes mellitus (DM) as it increased the survival rate by 78% against the diabetes mellitus. According to Milán-Noris prickly pear is the fruit which is enriched with many phytosterols, betalains, phenolic acids, and flavonoid. Especially, its peel has many bioactive compounds which can be extracted and used as a functional ingredient. His observation proved that the prickly pear peel is enriched with total phytosterols (65.65±1.5mg/g) such as, sitosterol (76.6%), campesterol (19.5%), and stigmasterol (3.9%) which show the strong hypocholesterolemic effect. Also, it contains the highest phenolic content which will produce a synergistic effect also.

Benign Prostatic Hypertrophy

The prostate is a part of the mammalian male reproductive organ which contributes to secretions. It surrounds the bladder and proximal portion of the urethra. Usually, these glandular muscles enlarge and press the urethra which causes hindrance in urination. *Opuntia ficus-indica* is thought to cure such complications especially the decoction made from the flowers of cactus pear. In North Africa, the flowers of Opuntia combined with barley seeds and corn-silk is used to treat urine obstruction. During a study on clinical trials of its 250mg capsules by Palevitch, results have shown that patients got relief from the symptoms of obstruction during urination and there was no change in urino-dynamics and kidney functions of the patients. Moreover, flowers of *Opuntia ficus-indica* are also effective in the cure of benign prostatic hypertrophy.

Wound Healing

Traditionally, *Opuntia ficus-indica* cladodes were used to promote wound healing through the formation of a scar. An ointment prepared by using 15% lyophilized cladodes has shown that it produces more organized tissue reconstruction, fibroblast and fibers will arrange in derma properly and piliferous bulbs will recover in 5 days. For wound healing, it is mandatory to keep the area well hydrated. So, *Opuntia ficus-indica* oil stimulates the scarring process by the development of epithelium over the granulation muscle and prevents the wound from dehydration as well.

USES AS FOOD

Opuntia ficus-indica has found its place in a variety of products to utilize in daily routine. This was possible due to its contents that are beneficial for health and also its production is easy and adaptive to the environment. The young tender stem is called “nopalitos” which are used in diverse dishes including salads, soups, snacks, pickled and desserts. Indigenous people utilize the nopal cactus seed extract in tea, juice, jam, or consume as dry or fresh fruits. Moreover, peeled and sliced pads are dried and called as leather britches that help add texture and fibrous material in soups and stews. The cactus pear pulp with effective natural colors is utilized for the preparation of additive-free i.e. artificial color/flavor toppings. It is used in the fortification purpose to make high quality products with high contents of phenolics and antioxidants such as stirred yogurt. The fruit wine is also obtained by the blend of *Opuntia ficus-indica* and *Lantana camara*. Furthermore, Cactus pear peel extraction can be successfully used in the substitution of wheat flour biscuits. Its pulp is also utilized in the production of fortified rice milk product. In the Southwestern United States, cactus pear is commonly added to the omelets which are very famous over there.

NUTRACEUTICAL USES

NeOpuntia prepared by Bio Serae Laboratories is an innovative functional food product that is made of dehydrated leaves of *Opuntia ficus-indica* containing soluble and insoluble fibers. This product is effective against lipid metabolism disorder and has hypolipidemic characteristics. Furthermore, cactus preparation is also
proved to be useful for the prevention of alcohol addiction63. Traditionally, phytochemical rich products were prepared from Opuntia ficus-indica extracts for herbal medicines35. Pharmacopeia, traditional medicine of sub-Saharan is prepared from cactus. Its flowers are effective anti-hemorrhoid medicine while fruits and flowers are antidiarrheal and anti-ulcerogenic mediators. Its cladode sap is the remedy for whooping cough. It involves heating the pads and places it on the chest of the patient which helps in relieving the congestion50. Alcoholic extracts of Opuntia ficus-indica is used as an antiviral, hypoglycemic, and anti-inflammatory. Similarly, it has been a part of traditional medicine and curative for various ailments like catarrhal gastritis, hyperlipidemia, edema, burns, wounds, and obesity in different countries51. Opuntia ficus-indica cladodes were used by Sicilian folk as cicatrizant (promote the healing through the formation of the scar)41. Dehydrated nopal of cactus pear has also served in the nutraceutical market as dietary supplements for having high nutritional value52. Not only the extract of cactus pear is helpful in the remedy of high blood sugar level, but also the cooked form plays a significant role in lowering the blood sugar level. It may be due to the presence of high fiber content as pectin absorbs sugar and supports the body in slow release of sugar throughout the day. Similarly, the stem portion of this plant is found to be useful in use for traditional medicine for edema and indigestion53. Tea made from the pad has been utilized for the cure of lung diseases54. Moreover, it is a traditional cure for various ailments like diuretic action, gastritis, antiulcer activity, arteriosclerosis, antioxidant property, diabetes, cartilage alteration protection, and hyperglycemia55. A process known as Chinese medicine is the “moxbustion”. In this process, plant material is burned on the skin to cure the infection and irritation. Likewise, the Lakota tribe prepares tea from prickly pear that is found to be helpful in childbirth13. Opuntia ficus-indica has been utilized as a treatment for the ailments such as bronchial asthma, diabetes, abdominal ache, indigestion, and burns in South Korea56.

OTHER USES

Extract of Opuntia ficus-indica cladodes is found to be useful in the reduction of salt stress in the agriculture sector57,58. It is also utilized as cattle fodder which imparts quality characteristics in milk. In addition, to enhance the flavor and color of the milk, it also brings nominal changes in the medium and longchain fatty acids in milk profile59. Oil extracted from prickly pear seeds are utilized in cosmetics as well35. Biogas is an essential energy source in the rural and agricultural areas. Cactus pear cladodes are served for the production of biogas as it has a high potential of biomass production2. The cactus pear (both spiny and spineless) was utilized as ruminant feed in Zimbabwe which was imported from South Africa60. The juice prepared by nopal is used as a hair massage which results in soft and shiny hair. Opuntia ficus-indica is utilized in the formation of moisturizers for skin56. For many centuries in Mexico, it was utilized in the formation of waterproof paints that are used to paint houses, churches, and marking of property lines. Moreover, it is also useful as a protective barrier against predators. In Central Africa, its juice is proved to be nominal mosquito repellent. It has its ornamental use as well due to its attractive colors and desert landscape. The gum obtained from cactus is usually used for stiffening the clothes. It is also a good source of dye. Additionally, essential oils obtained from its flowers and seeds are consumed as perfumes and oils13.

CONCLUSION

In this modern era, industrialization has made everything possible and we get many alternates of natural products. There are some natural elements have also proven to be effective as well. Global food insecurity, natural resources shortcomings and increase in population are the issues that have already targeted our globe but will become drastic in the future. To avoid such a situation, we need to find the solutions within nature. Opuntia ficus-indica is a natural product that can grow without many natural resources consumption. Moreover, it is proven that it has therapeutic effects for various diseases. Hence, it can become one of the major nutraceutical product in near future owing to its marvelous physical and chemical characteristics.

ACKNOWLEDGEMENTS

None.
LIST OF ABBREVIATIONS

CAM Crassulacean acid metabolism (Carbon Fixation Pathway)
CCl4 Carbon tetrachloride
COX-2 Cyclooxygenase-2
DM Diabetes mellitus
ha Hectare
hrs Hours
IGR Isorhamnetin-3-O-Glucosyl-Rhamnoside
IGRR Isorhamnetin-3-O-Glucosyl-Rhamnosyl-Rhamnoside
PGE2 Prostaglandin
PS Phosphatidylserine
ROS Reactive Oxygen Species

REFERENCES

21. Siriwarsdhana N, Shahidi F, Jeon YJ. Potential antioxidant effects of cactus pear fruit (Opuntia ficus-

52. Prakash D, Sharma G. (Eds.). Phytochemicals of nutraceutical importance. 2014; CABI.

